Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Neurol ; 371: 114589, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907125

RESUMEN

Highly varying patterns of electrostimulation (Dynamic Stimulation, DS) delivered to the dorsal cord through an epidural array with 18 independent electrodes transiently facilitate corticospinal motor responses, even after spinal injury. To partly unravel how corticospinal input are affected by DS, we introduced a corticospinal platform that allows selective cortical stimulation during the multisite acquisition of cord dorsum potentials (CDPs) and the simultaneous supply of DS. Firstly, the epidural interface was validated by the acquisition of the classical multisite distribution of CDPs and their input-output profile elicited by pulses delivered to peripheral nerves. Apart from increased EMGs, DS selectively increased excitability of the spinal interneurons that first process corticospinal input, without changing the magnitude of commands descending from the motor cortex, suggesting a novel correlation between muscle recruitment and components of cortically-evoked CDPs. Finally, DS increases excitability of post-synaptic spinal interneurons at the stimulation site and their responsiveness to any residual supraspinal control, thus supporting the use of electrical neuromodulation whenever the motor output is jeopardized by a weak volitional input, due to a partial disconnection from supraspinal structures and/or neuronal brain dysfunctions.


Asunto(s)
Traumatismos de la Médula Espinal , Estimulación de la Médula Espinal , Humanos , Potenciales Evocados Motores/fisiología , Estimulación Eléctrica , Interneuronas , Médula Espinal , Tractos Piramidales/fisiología
2.
Neuropsychologia ; 187: 108613, 2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37285931

RESUMEN

Transcutaneous electrical stimulation (TCES) of the spinal cord induces changes in spinal excitability. Motor imagery (MI) elicits plasticity in the motor cortex. It has been suggested that plasticity occurring in both cortical and spinal circuits might underlie the improvements in performance observed when training is combined with stimulation. We investigated the acute effects of cervical TCES and MI delivered in isolation or combined on corticospinal excitability, spinal excitability and manual performance. Participants (N = 17) completed three sessions during which they engaged in 20 min of: 1) MI, listening to an audio recording instructing to complete the purdue pegboard test (PPT) of manual performance; 2) TCES at the spinal level of C5-C6; 3) MI + TCES, listening to the MI script while receiving TCES. Before and after each condition, we measured corticospinal excitability via transcranial magnetic stimulation (TMS) at 100% and 120% motor threshold (MT), spinal excitability via single-pulse TCES and manual performance with the PPT. Manual performance was not improved by MI, TCES or MI + TCES. Corticospinal excitability assessed at 100% MT intensity increased in hand and forearm muscles after MI and MI + TCES, but not after just TCES. Conversely, corticospinal excitability assessed at 120% MT intensity was not affected by any of the conditions. The effects on spinal excitability depended on the recorded muscle: it increased after all conditions in biceps brachii (BB) and flexor carpi radialis (FCR); did not change after any conditions in the abductor pollicis brevis (APB); increased after TCES and MI + TCES, but not after just MI in the extensor carpi radialis (ECR). These findings suggest that MI and TCES increase the excitability of the central nervous system through different but complementary mechanisms, inducing changes in the excitability of spinal and cortical circuits. MI and TCES can be used in combination to modulate spinal/cortical excitability, an approach particularly relevant for people with limited residual dexterity who cannot engage in motor practice.


Asunto(s)
Estimulación Eléctrica Transcutánea del Nervio , Humanos , Músculo Esquelético/fisiología , Médula Espinal/fisiología , Estimulación Magnética Transcraneal , Imágenes en Psicoterapia , Potenciales Evocados Motores/fisiología , Electromiografía , Tractos Piramidales/fisiología , Estimulación Eléctrica
3.
Nat Commun ; 14(1): 2708, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169765

RESUMEN

Motor skill learning relies on the plasticity of the primary motor cortex as task acquisition drives cortical motor network remodeling. Large-scale cortical remodeling of evoked motor outputs occurs during the learning of corticospinal-dependent prehension behavior, but not simple, non-dexterous tasks. Here we determine the response of corticospinal neurons to two distinct motor training paradigms and assess the role of corticospinal neurons in the execution of a task requiring precise modulation of forelimb movement and one that does not. In vivo calcium imaging in mice revealed temporal coding of corticospinal activity coincident with the development of precise prehension movements, but not more simplistic movement patterns. Transection of the corticospinal tract and optogenetic regulation of corticospinal activity show the necessity for patterned corticospinal network activity in the execution of precise movements but not simplistic ones. Our findings reveal a critical role for corticospinal network modulation in the learning and execution of precise motor movements.


Asunto(s)
Corteza Motora , Ratones , Animales , Corteza Motora/fisiología , Tractos Piramidales/fisiología , Neuronas , Movimiento/fisiología , Aprendizaje/fisiología
4.
J Physiol ; 601(10): 1897-1924, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36916205

RESUMEN

Sensory and corticospinal tract (CST) pathways activate spinal GABAergic interneurons that have axoaxonic connections onto proprioceptive (Ia) afferents that cause long-lasting depolarizations (termed primary afferent depolarization, PAD). In rodents, sensory-evoked PAD is produced by GABAA receptors at nodes of Ranvier in Ia afferents, rather than at presynaptic terminals, and facilitates spike propagation to motoneurons by preventing branch-point failures, rather than causing presynaptic inhibition. We examined in 40 human participants whether putative activation of Ia-PAD by sensory or CST pathways can also facilitate Ia afferent activation of motoneurons via the H-reflex. H-reflexes in several leg muscles were facilitated by prior conditioning from low-threshold proprioceptive, cutaneous or CST pathways, with a similar long-lasting time course (∼200 ms) to phasic PAD measured in rodent Ia afferents. Long trains of cutaneous or proprioceptive afferent conditioning produced longer-lasting facilitation of the H-reflex for up to 2 min, consistent with tonic PAD in rodent Ia afferents mediated by nodal α5-GABAA receptors for similar stimulation trains. Facilitation of H-reflexes by this conditioning was likely not mediated by direct facilitation of the motoneurons because isolated stimulation of sensory or CST pathways did not alone facilitate the tonic firing rate of motor units. Furthermore, cutaneous conditioning increased the firing probability of single motor units (motoneurons) during the H-reflex without increasing their firing rate at this time, indicating that the underlying excitatory postsynaptic potential was more probable, but not larger. These results are consistent with sensory and CST pathways activating nodal GABAA receptors that reduce intermittent failure of action potentials propagating into Ia afferent branches. KEY POINTS: Controlled execution of posture and movement requires continually adjusted feedback from peripheral sensory pathways, especially those that carry proprioceptive information about body position, movement and effort. It was previously thought that the flow of proprioceptive feedback from Ia afferents was only reduced by GABAergic neurons in the spinal cord that sent axoaxonic projections to the terminal endings of sensory axons (termed GABAaxo neurons). Based on new findings in rodents, we provide complementary evidence in humans to suggest that sensory and corticospinal pathways known to activate GABAaxo neurons that project to dorsal parts of the Ia afferent also increase the flow of proprioceptive feedback to motoneurons in the spinal cord. These findings support a new role for spinal GABAaxo neurons in facilitating afferent feedback to the spinal cord during voluntary or reflexive movements.


Asunto(s)
Neuronas Motoras , Médula Espinal , Humanos , Neuronas Motoras/fisiología , Médula Espinal/fisiología , Tractos Piramidales/fisiología , Transmisión Sináptica/fisiología , Músculo Esquelético/fisiología , Vías Aferentes , Ácido gamma-Aminobutírico , Neuronas Aferentes/fisiología
5.
Cell Rep ; 39(6): 110801, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545038

RESUMEN

Motor cortex generates descending output necessary for executing a wide range of limb movements. Although movement-related activity has been described throughout motor cortex, the spatiotemporal organization of movement-specific signaling in deep layers remains largely unknown. Here we record layer 5B population dynamics in the caudal forelimb area of motor cortex while mice perform a forelimb push/pull task and find that most neurons show movement-invariant responses, with a minority displaying movement specificity. Using cell-type-specific imaging, we identify that invariant responses dominate pyramidal tract (PT) neuron activity, with a small subpopulation representing movement type, whereas a larger proportion of intratelencephalic (IT) neurons display movement-type-specific signaling. The proportion of IT neurons decoding movement-type peaks prior to movement initiation, whereas for PT neurons, this occurs during movement execution. Our data suggest that layer 5B population dynamics largely reflect movement-invariant signaling, with information related to movement-type being routed through relatively small, distributed subpopulations of projection neurons.


Asunto(s)
Corteza Motora , Animales , Miembro Anterior/fisiología , Ratones , Corteza Motora/fisiología , Movimiento/fisiología , Neuronas/fisiología , Tractos Piramidales/fisiología
6.
Psychophysiology ; 59(10): e14069, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35393640

RESUMEN

Mental imagery is a powerful capability that engages similar neurophysiological processes that underlie real sensory and motor experiences. Previous studies show that motor cortical excitability can increase during mental imagery of actions. In this study, we focused on possible inhibitory effects of mental imagery on motor functions. We assessed whether imagined arm paralysis modulates motor cortical excitability in healthy participants, as measured by motor evoked potentials (MEPs) of the hand induced by near-threshold transcranial magnetic stimulation (TMS) over the primary motor cortex hand area. We found lower MEP amplitudes during imagined arm paralysis when compared to imagined leg paralysis or baseline stimulation without paralysis imagery. These results show that purely imagined bodily constraints can selectively inhibit basic motor corticospinal functions. The results are discussed in the context of motoric embodiment/disembodiment.


Asunto(s)
Potenciales Evocados Motores , Mano , Imaginación , Corteza Motora , Parálisis , Estimulación Magnética Transcraneal , Electromiografía/métodos , Potenciales Evocados Motores/fisiología , Mano/fisiología , Humanos , Imaginación/fisiología , Corteza Motora/fisiología , Músculo Esquelético/fisiología , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal/métodos
7.
Curr Biol ; 32(7): 1616-1622.e5, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35219429

RESUMEN

During motor learning,1 as well as during neuroprosthetic learning,2-4 animals learn to control motor cortex activity in order to generate behavior. Two different populations of motor cortex neurons, intra-telencephalic (IT) and pyramidal tract (PT) neurons, convey the resulting cortical signals within and outside the telencephalon. Although a large amount of evidence demonstrates contrasting functional organization among both populations,5,6 it is unclear whether the brain can equally learn to control the activity of either class of motor cortex neurons. To answer this question, we used a calcium-imaging-based brain-machine interface (CaBMI)3 and trained different groups of mice to modulate the activity of either IT or PT neurons in order to receive a reward. We found that the animals learned to control PT neuron activity faster and better than IT neuron activity. Moreover, our findings show that the advantage of PT neurons is the result of characteristics inherent to this population as well as their local circuitry and cortical depth location. Taken together, our results suggest that the motor cortex is more efficient at controlling the activity of pyramidal tract neurons, which are embedded deep in the cortex, and relaying motor commands outside the telencephalon.


Asunto(s)
Interfaces Cerebro-Computador , Corteza Motora , Animales , Aprendizaje/fisiología , Ratones , Corteza Motora/fisiología , Neuronas Motoras/fisiología , Tractos Piramidales/fisiología
8.
Neuroscience ; 485: 53-64, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35031397

RESUMEN

Conventional transcutaneous electrical nerve stimulation (TENS) has been reported to effectively alleviate chronic pain, including phantom limb pain (PLP). Recently, literature has focused on modulated TENS patterns, such as pulse width modulation (PWM) and burst modulation (BM), as alternatives to conventional, non-modulated (NM) sensory neurostimulation to increase the efficiency of rehabilitation. However, there is still limited knowledge of how these modulated TENS patterns affect corticospinal (CS) and motor cortex activity. Therefore, our aim was to first investigate the effect of modulated TENS patterns on CS activity and corticomotor map in healthy subjects. Motor evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS) were recorded from three muscles before and after the application of TENS interventions. Four different TENS patterns (PWM, BM, NM 40 Hz, and NM 100 Hz) were applied. The results revealed significant facilitation of CS excitability following the PWM intervention. We also found an increase in the volume of the motor cortical map following the application of the PWM and NM (40 Hz). Although PLP alleviation has been reported to be associated with an enhancement of corticospinal excitability, the efficiency of the PWM intervention to induce pain alleviation should be validated in a future clinical study in amputees with PLP.


Asunto(s)
Corteza Motora , Estimulación Eléctrica Transcutánea del Nervio , Potenciales Evocados Motores/fisiología , Voluntarios Sanos , Humanos , Corteza Motora/fisiología , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal/métodos , Estimulación Eléctrica Transcutánea del Nervio/métodos
9.
Cereb Cortex ; 32(3): 640-651, 2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-34313709

RESUMEN

Pain influences both motor behavior and neuroplastic adaptations induced by physical training. Motor imagery (MI) is a promising method to recover motor functions, for instance in clinical populations with limited endurance or concomitant pain. However, the influence of pain on the MI processes is not well established. This study investigated whether acute experimental pain could modulate corticospinal excitability assessed at rest and during MI (Exp. 1) and limit the use-dependent plasticity induced by MI practice (Exp. 2). Participants imagined thumb movements without pain or with painful electrical stimulations applied either on digit V or over the knee. We used transcranial magnetic stimulation to measure corticospinal excitability at rest and during MI (Exp. 1) and to evoke involuntary thumb movements before and after MI practice (Exp. 2). Regardless of its location, pain prevented the increase of corticospinal excitability that is classically observed during MI. In addition, pain blocked use-dependent plasticity following MI practice, as testified by a lack of significant posttraining deviations. These findings suggest that pain interferes with MI processes, preventing the corticospinal excitability facilitation needed to induce use-dependent plasticity. Pain should be carefully considered for rehabilitation programs using MI to restore motor function.


Asunto(s)
Dolor Agudo , Electromiografía , Potenciales Evocados Motores/fisiología , Humanos , Imágenes en Psicoterapia , Imaginación/fisiología , Movimiento/fisiología , Músculo Esquelético/fisiología , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal
10.
Sci Rep ; 11(1): 13176, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162974

RESUMEN

In healthy participants, corticospinal excitability is known to increase during motor simulations such as motor imagery (MI), action observation (AO) and mirror therapy (MT), suggesting their interest to promote plasticity in neurorehabilitation. Further comparing these methods and investigating their combination may potentially provide clues to optimize their use in patients. To this end, we compared in 18 healthy participants abductor pollicis brevis (APB) corticospinal excitability during MI, AO or MT, as well as MI combined with either AO or MT. In each condition, 15 motor-evoked potentials (MEPs) and three maximal M-wave were elicited in the right APB. Compared to the control condition, mean normalized MEP amplitude (i.e. MEP/M) increased during MI (P = .003), MT (P < .001) and MT + MI (P < .001), without any difference between the three conditions. No MEP modulation was evidenced during AO or AO + MI. Because MI provided no additional influence when combined with AO or MT, our results may suggest that, in healthy subjects, visual feedback and unilateral movement with a mirror may provide the greatest effects among all the tested motor simulations.


Asunto(s)
Potenciales Evocados Motores/fisiología , Nervio Mediano/fisiología , Corteza Motora/fisiología , Movimiento , Estimulación Luminosa , Tractos Piramidales/fisiología , Estimulación Acústica , Adulto , Estimulación Eléctrica , Electromiografía , Femenino , Dedos/inervación , Dedos/fisiología , Humanos , Imaginación/fisiología , Masculino , Neuronas Espejo/fisiología , Plasticidad Neuronal , Observación , Valores de Referencia , Pulgar/inervación , Pulgar/fisiología , Estimulación Magnética Transcraneal , Adulto Joven
11.
J Neurosci ; 41(7): 1418-1428, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33441436

RESUMEN

Existing non-invasive stimulation protocols can generate plasticity in the motor cortex and its corticospinal projections; techniques for inducing plasticity in subcortical circuits and alternative descending pathways such as the reticulospinal tract (RST) are less well developed. One possible approach developed by this laboratory pairs electrical muscle stimulation with auditory clicks, using a wearable device to deliver stimuli during normal daily activities. In this study, we applied a variety of electrophysiological assessments to male and female healthy human volunteers during a morning and evening laboratory visit. In the intervening time (∼6 h), subjects wore the stimulation device, receiving three different protocols, in which clicks and stimulation of the biceps muscle were paired at either low or high rate, or delivered at random. Paired stimulation: (1) increased the extent of reaction time shortening by a loud sound (the StartReact effect); (2) decreased the suppression of responses to transcranial magnetic brain stimulation (TMS) following a loud sound; (3) enhanced muscle responses elicited by a TMS coil oriented to induce anterior-posterior (AP) current, but not posterior-anterior (PA) current, in the brain. These measurements have all been suggested to be sensitive to subcortical, possibly reticulospinal, activity. Changes were similar for either of the two paired stimulus rates tested, but absent after unpaired (control) stimulation. Taken together, these results suggest that pairing clicks and muscle stimulation for long periods does indeed induce plasticity in subcortical systems such as the RST.SIGNIFICANCE STATEMENT Subcortical systems such as the reticulospinal tract (RST) are important motor pathways, which can make a significant contribution to functional recovery after cortical damage such as stroke. Here, we measure changes produced after a novel non-invasive stimulation protocol, which uses a wearable device to stimulate for extended periods. We observed changes in electrophysiological measurements consistent with the induction of subcortical plasticity. This protocol may prove an important tool for enhancing motor rehabilitation, in situations where insufficient cortical tissue survives to be a plausible substrate for recovery of function.


Asunto(s)
Corteza Cerebral/fisiología , Estimulación Eléctrica/instrumentación , Estimulación Eléctrica/métodos , Plasticidad Neuronal/fisiología , Dispositivos Electrónicos Vestibles , Estimulación Acústica , Adolescente , Adulto , Electromiografía , Fenómenos Electrofisiológicos , Potenciales Evocados Motores/fisiología , Femenino , Músculos Isquiosurales/inervación , Músculos Isquiosurales/fisiología , Voluntarios Sanos , Humanos , Masculino , Corteza Motora/fisiología , Tractos Piramidales/fisiología , Tiempo de Reacción/fisiología , Estimulación Magnética Transcraneal , Adulto Joven
12.
PLoS One ; 15(6): e0235074, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32569326

RESUMEN

OBJECTIVES: It is commonly accepted that motor imagery (MI), i.e. the mental simulation of a movement, leads to an increased size of cortical motor evoked potentials (MEPs), although the magnitude of this effect differs between studies. Its impact on the spinal level is even more variable in the literature. Such discrepancies may be explained by many different experimental approaches. Therefore, the question of the optimal stimulation parameters to assess both spinal and corticospinal excitabilities remains open. METHODS: H-reflexes and MEPs of the triceps surae were evoked in 11 healthy subjects during MI, weak voluntary contraction (CON) and rest (REST). In each condition, the full recruitment curve from the response threshold to maximal potential was investigated. RESULTS: At stimulation intensities close to the maximal response, MEP amplitude was increased by CON compared to REST on the triceps surae. No effect of the different conditions was found on the H-reflex recruitment curve, except a small variation beyond maximal H-reflex in the soleus muscle. CONCLUSION: Based on our results, we recommend to assess corticospinal excitability between 70% and 100% of maximal MEP intensity instead of the classical use of a percentage of the motor threshold and to elicit H-reflexes on the ascending part of the recruitment curve.


Asunto(s)
Imágenes en Psicoterapia , Contracción Muscular/fisiología , Tractos Piramidales/fisiología , Descanso , Médula Espinal/fisiología , Estimulación Magnética Transcraneal , Adulto , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Masculino , Proyectos Piloto
13.
J Cogn Neurosci ; 32(4): 634-645, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31820678

RESUMEN

There is evidence that action observation (AO) and the processing of action-related words are associated with increased activity in cortical motor regions. Research has examined the effects of AO and action verb processing on activity in the motor system independently. The aim of this experiment was to investigate, for the first time, the modulation of corticospinal excitability and visual attention during the concurrent processing of action verbs and AO stimuli. Twenty participants took part in an integrated transcranial magnetic stimulation and eye-tracking protocol. Single-pulse transcranial magnetic stimulation was delivered to the hand representation of the left motor cortex during (i) observation of a static hand, (ii) AO of a hand squeezing a sponge, (iii) AO of the same action with an audio recording of the word "squeeze," and (iv) AO of the same action with an audio recording of the word "green". Motor evoked potentials were recorded from the abductor pollicis brevis and abductor digiti minimi muscles of the right hand. Eye gaze was recorded throughout the four conditions as a proxy for visual attention. Interviews were conducted to discuss participants' preferences and imagery use for each condition. The AO and action verb condition resulted in significantly increased motor evoked potential amplitudes in the abductor pollicis brevis muscle; participants also made significantly more fixations on the sponge and reported wanting to move their hand more in the action verb condition. The inclusion of auditory action verbs, alongside AO stimuli, in movement simulation interventions could have implications for the delivery of AO interventions for motor (re)learning.


Asunto(s)
Atención/fisiología , Lenguaje , Corteza Motora/fisiología , Percepción Visual/fisiología , Adulto , Potenciales Evocados Motores , Medidas del Movimiento Ocular , Femenino , Humanos , Masculino , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal , Adulto Joven
14.
Med Sci Sports Exerc ; 52(5): 1031-1040, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31764463

RESUMEN

PURPOSE: It is not known yet whether the neurophysiological specificity of eccentric, concentric, and isometric contractions can also be observed when these are mentally simulated. Therefore, our aim was to assess corticospinal excitability during motor imagery (MI) of different contraction types and to test whether a passive movement during MI could have additional effects. METHODS: Twelve young participants imagined contractions of the wrist flexors, firstly with the arm motionless (static mode) and second, with a congruent passive movement (wrist extension during eccentric MI and wrist flexion during concentric MI). Motor-evoked potentials (MEP) and H-reflexes were elicited in flexor carpi radialis (FCR) at rest and during the three types of MI. As a secondary outcome, the MEP of one antagonist (extensor carpi radialis), elicited concomitantly with FCR MEP recording, were also analyzed. RESULTS: In static mode, FCR MEP were facilitated during isometric (P = 0.046) and concentric (P = 0.039) MI, but not during eccentric MI (P = 0.902). With passive congruent movements, FCR MEP were enhanced during all imagined contraction types, including eccentric (P = 0.047). FCR H-reflexes increased only during eccentric MI accompanied with wrist extension (P = 0.003). Extensor carpi radialis MEP were modulated only when a passive congruent movement was provided (P = 0.040). CONCLUSIONS: Like actual contractions, eccentric MI exhibits specific neural correlates, compared with isometric and concentric MI, which should be considered when using this modality for training. The present results showed that adding passive movements congruent to the eccentric MI task would enhance its impact over corticospinal structures.


Asunto(s)
Potenciales Evocados Motores/fisiología , Reflejo H/fisiología , Imaginación/fisiología , Contracción Muscular/fisiología , Tractos Piramidales/fisiología , Estimulación Eléctrica , Electromiografía , Retroalimentación Sensorial , Humanos , Contracción Isométrica/fisiología , Masculino , Neurorretroalimentación , Estimulación Magnética Transcraneal , Adulto Joven
15.
BMC Neurosci ; 20(1): 50, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547806

RESUMEN

BACKGROUND: Movement performance depends on the synaptic interactions generated by coherent parallel sensorimotor cortical outputs to different downstream targets. The major outputs of the neocortex to subcortical structures are driven by pyramidal tract neurons (PTNs) located in layer 5B. One of the main targets of PTNs is the spinal cord through the corticospinal (CS) system, which is formed by a complex collection of distinct CS circuits. However, little is known about intracortical synaptic interactions that originate CS commands and how different populations of CS neurons are functionally organized. To further understand the functional organization of the CS system, we analyzed the activity of unambiguously identified CS neurons projecting to different zones of the same spinal cord segment using two-photon calcium imaging and retrograde neuronal tracers. RESULTS: Sensorimotor cortex slices obtained from transgenic mice expressing GCaMP6 funder the Thy1 promoter were used to analyze the spontaneous calcium transients in layer 5 pyramidal neurons. Distinct subgroups of CS neurons projecting to dorsal horn and ventral areas of the same segment show more synchronous activity between them than with other subgroups. CONCLUSIONS: The results indicate that CS neurons projecting to different spinal cord zones segregated into functional ensembles depending on their hodology, suggesting that a modular organization of CS outputs controls sensorimotor behaviors in a coordinated manner.


Asunto(s)
Conectoma , Tractos Piramidales/fisiología , Médula Espinal/fisiología , Animales , Calcio/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Ratones , Ratones Transgénicos , Corteza Motora/metabolismo , Corteza Motora/fisiología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas/métodos , Neuronas/fisiología , Tractos Piramidales/metabolismo , Médula Espinal/metabolismo
16.
Neuromodulation ; 22(5): 555-563, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31232503

RESUMEN

OBJECTIVES: To investigate whether peripheral electrical stimulation (PES) of back extensor muscles changes excitability of the corticospinal pathway of the stimulated muscle and synergist trunk muscles. METHODS: In 12 volunteers with no history of low back pain (LBP), intramuscular fine-wire electrodes recorded electromyography (EMG) from the deep multifidus (DM) and longissimus muscles. Surface electrodes recorded general EMG from the erector spinae and abdominal muscles. Single- and paired-pulse transcranial magnetic stimulation (TMS) paradigms tested corticospinal excitability, short-interval intracortical inhibition (SICI-2 and 3 ms), and intracortical facilitation (ICF) optimized for recordings of DM. Active motor threshold (aMT) to evoke a motor-evoked potential (MEP) in DM was determined and stimulation was applied at 120% of this intensity. PES was provided via electrodes placed over the right multifidus. The effect of 20-min PES (ramped motor activation) was studied. RESULTS: Mean aMT for DM was 42.7 ± 10% of the maximal stimulator output. No effects of PES were found on MEP amplitude (single-pulse TMS) for any trunk muscles examined. There was no evidence for changes in SICI or ICF; that is, conditioned MEP amplitude was not different between trials after PES. CONCLUSION: Results indicate that, unlike previous reports that show increased corticospinal excitability of limb muscles, PES of back muscles does not modify the corticospinal excitability. This difference in response of the motor pathway of back muscles to PES might be explained by the lesser importance of voluntary cortical drive to these muscles and the greater role of postural networks. Whether PES influences back muscle training remains unclear, yet the present results suggest that potential effects are unlikely to be explained by the effects of PES at corticospinal level with the parameters used in this study.


Asunto(s)
Músculos de la Espalda/fisiología , Electromiografía/métodos , Tractos Piramidales/fisiología , Transducción de Señal/fisiología , Estimulación Magnética Transcraneal/métodos , Estimulación Eléctrica Transcutánea del Nervio/métodos , Adulto , Músculos de la Espalda/inervación , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
17.
Exp Brain Res ; 237(8): 1973-1980, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31143970

RESUMEN

A startling acoustic stimulus (SAS) could cause transient effects on the primary motor cortex and its descending tracts after habituation of reflex responses. In the literature, there is evidence that the effects of SAS depend on the status of M1 excitability and delivery time of SAS. In this study, we aimed to comprehensively investigate the effects of SAS on the excitability of primary motor cortex. Eleven healthy subjects participated in this study. Transcranial magnetic stimulation (TMS) was delivered to the hot spot for left biceps at rest and during isometric right elbow flexion (10, 30, and 60% of their maximum voluntary contraction, MVC). There were three SAS conditions: (1) No SAS; (2) SAS was delivered 50 ms prior to TMS (SAS50); (3) SAS 90 ms prior to TMS (SAS90). For each subject, the induced MEP amplitude was normalized to the largest response at rest with No SAS. Two-way ANOVAs (4 force levels × 3 SAS conditions) with repeated measures were used to determine the differences under different conditions. For the MEP amplitude, there were significant force level effect and FORCE LEVEL × SAS interactions. Specifically, the MEP amplitude increased with force level. Furthermore, post hoc analysis showed that the MEP amplitude reduced during SAS50 and SAS90 compared to No SAS only at rest. Our results provide evidence that a conditioning SAS causes a transient suppression of the corticospinal excitability at rest when it is delivered 50 ms and 90 ms prior to TMS. However, a conditioning SAS has no effect when the corticospinal excitability is already elevated with an external visual target.


Asunto(s)
Estimulación Acústica/métodos , Corteza Motora/fisiología , Tractos Piramidales/fisiología , Reflejo de Sobresalto/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Retroalimentación Sensorial/fisiología , Femenino , Humanos , Masculino
18.
Neural Plast ; 2019: 1328453, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31093269

RESUMEN

Transcranial magnetic stimulation was used to investigate corticospinal output changes in 10 professional piano players during motor imagery of triad chords in C major to be "mentally" performed with three fingers of the right hand (thumb, index, and little finger). Five triads were employed in the task; each composed by a stable 3rd interval (C4-E4) and a varying third note that could generate a 5th (G4), a 6th (A4), a 7th (B4), a 9th (D5), or a 10th (E5) interval. The 10th interval chord was thought to be impossible in actual execution for biomechanical reasons, as long as the thumb and the index finger remained fixed on the 3rd interval. Chords could be listened from loudspeakers, read on a staff, or listened and read at the same time while performing the imagery task. The corticospinal output progressively increased along with task demands in terms of mental representation of hand extension. The effects of audio, visual, or audiovisual musical stimuli were generally similar, unless motor imagery of kinetically impossible triads was required. A specific three-effector motor synergy was detected, governing the representation of the progressive mental extension of the hand. Results demonstrate that corticospinal facilitation in professional piano players can be modulated according to the motor plan, even if simply "dispatched" without actual execution. Moreover, specific muscle synergies, usually encoded in the motor cortex, emerge along the cross-modal elaboration of musical stimuli and in motor imagery of musical performances.


Asunto(s)
Percepción Auditiva/fisiología , Imaginación/fisiología , Corteza Motora/fisiología , Destreza Motora/fisiología , Tractos Piramidales/fisiología , Percepción Visual/fisiología , Adulto , Electromiografía , Potenciales Evocados Motores , Femenino , Humanos , Masculino , Músculo Esquelético/fisiología , Estimulación Magnética Transcraneal , Adulto Joven
19.
J Neurophysiol ; 121(5): 1809-1821, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30864866

RESUMEN

Corticospinal output pathways have typically been considered to be the primary driver for voluntary movements of the hand/forearm; however, more recently, reticulospinal drive has also been implicated in the production of these movements. Although both pathways may play a role, the reticulospinal tract is thought to have stronger connections to flexor muscles than to extensors. Similarly, movements involuntarily triggered via a startling acoustic stimulus (SAS) are believed to receive greater reticular input than voluntary movements. To investigate a differential role of reticulospinal drive depending on movement type or acoustic stimulus, corticospinal drive was transiently interrupted using high-intensity transcranial magnetic stimulation (TMS) applied during the reaction time (RT) interval. This TMS-induced suppression of cortical drive leads to RT delays that can be used to assess cortical contributions to movement. Participants completed targeted flexion and extension movements of the wrist in a simple RT paradigm in response to a control auditory go signal or SAS. Occasionally, suprathreshold TMS was applied over the motor cortical representation for the prime mover. Results revealed that TMS significantly increased RT in all conditions. There was a significantly longer TMS-induced RT delay seen in extension movements than in flexion movements and a greater RT delay in movements initiated in response to control stimuli compared with SAS. These results suggest that the contribution of reticulospinal drive is larger for wrist flexion than for extension. Similarly, movements triggered involuntarily by an SAS appear to involve greater reticulospinal drive, and relatively less corticospinal drive, than those that are voluntarily initiated. NEW & NOTEWORTHY Through the use of the transcranial magnetic stimulation-induced silent period, we provide novel evidence for a greater contribution of reticulospinal drive, and a relative decrease in corticospinal drive, to movements involuntarily triggered by a startle compared with voluntary movements. These results also provide support for the notion that both cortical and reticular structures are involved in the neural pathway underlying startle-triggered movements. Furthermore, our results indicate greater reticulospinal contribution to wrist flexion than extension movements.


Asunto(s)
Tractos Piramidales/fisiología , Reflejo de Sobresalto , Corteza Somatosensorial/fisiología , Estimulación Acústica , Femenino , Humanos , Masculino , Movimiento , Tiempo de Reacción , Estimulación Magnética Transcraneal , Adulto Joven
20.
Neural Plast ; 2018: 8265427, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29849569

RESUMEN

Motor imagery (MI), the mental simulation of an action, influences the cortical, corticospinal, and spinal levels, despite the lack of somatosensory afferent feedbacks. The aim of this study was to analyze the effect of MI associated with somatosensory stimulation (SS) on the corticospinal and spinal excitabilities. We used transcranial magnetic stimulation and peripheral nerve stimulation to induce motor-evoked potentials (MEP) and H-reflexes, respectively, in soleus and medialis gastrocnemius (MG) muscles of the right leg. Twelve participants performed three tasks: (1) MI of submaximal plantar flexion, (2) SS at 65 Hz on the posterior tibial nerve with an intensity below the motor threshold, and (3) MI + SS. MEP and H-reflex amplitudes were recorded before, during, and after the tasks. Our results confirmed that MI increased corticospinal excitability in a time-specific manner. We found that MI + SS tended to potentiate MEP amplitude of the MG muscle compared to MI alone. We confirmed that SS decreased spinal excitability, and this decrease was partially compensated when combined with MI, especially for the MG muscle. The increase of CSE could be explained by a modulation of the spinal inhibitions induced by SS, depending on the amount of afferent feedbacks.


Asunto(s)
Imaginación , Corteza Motora/fisiología , Nervios Periféricos/fisiología , Desempeño Psicomotor , Tractos Piramidales/fisiología , Médula Espinal/fisiología , Tacto/fisiología , Adulto , Estimulación Eléctrica , Electromiografía , Potenciales Evocados Motores , Femenino , Reflejo H , Humanos , Masculino , Actividad Motora , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Estimulación Magnética Transcraneal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA